Otsu based Multi-level Image Segmentation using Brownian Bat Algorithm

نویسندگان

  • Joyce Preethi
  • R. Angel Sujitha
  • V. Rajinikanth
  • Sri Madhava Raja
چکیده

In this work, bi-level and multi-level segmentation is proposed for the grey image dataset using a novel Brownian Bat Algorithm (BBA). Maximization of Otsu's between-class variance function is chosen as the objective function. The performance of the proposed CBA is demonstrated by considering five benchmark images and compared with the existing bat algorithms such as Traditional Bat Algorithm (TBA) and the Lévy flight Bat Algorithm (LBA).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...

متن کامل

An Efficient Medical Image Segmentation Using Conventional OTSU Method

The main objective of medical image segmentation is to extract and characterize anatomical structures with respect to some input features or expert knowledge. The Otsu method is a popular non-parametric method in medical image segmentation. Traditional Otsu method for medical image segmentation is time–consuming computation and became an obstacle in real time application systems. In the same wa...

متن کامل

Optimal multi-thresholding using a hybrid optimization approach

The Otsu s method has been proven as an efficient method in image segmentation for bi-level thresholding. However, this method is computationally intensive when extended to multi-level thresholding. In this paper, we present a hybrid optimization scheme for multiple thresholding by the criteria of (1) Otsu s minimum within-group variance and (2) Gaussian function fitting. Four example images ar...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Automatic Extraction of Water in High-resolution Sar Images Based on Multi-scale Level Set Method and Otsu Algorithm

Water extraction has an important significance in flood disaster management and environmental monitoring. Compared to optical sensor, Synthetic aperture radar (SAR), which has the properties of high resolution and all-weather acquisition, has been used for water extraction in this paper. Due to the presence of coherent speckles, which can be modeled as strong, multiplicative noise, water extrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015